
Graph Coloring with Grover's Algorithm:
Optimizing Time and Space Efficiencies

Soham Jain1, Dr. Atul Mantri2

Virginia Tech Center for Quantum Information Science and Engineering

Problem
● Graph Coloring

● Given the following graph and a

constraint set:
○ {Red, Green, Blue}

● No two adjacent vertices can be

allocated the same color

● Over 59,000 possibilities but only a

few solutions

● Computers are often used to solve

basic graph coloring problems
○ Significant improvement from trying to

do them by hand

Problem

Background

● Grover’s Algorithm
○ Search algorithm with O(√N) efficiency

○ Requires significantly less memory

● Method 1: Search every box
○ Linear search algorithm

○ O(N) efficiency

1 2 3

15... 16

Background
● Method 2: Grover’s Algorithm

○ “Super guess” that considers every possibility at once

○ Applies superposition state

1 2 3 15 16...

|0>
1

√16
|1>

1

√16
|2>

1

√16
|14>

1

√16
|15>

1

√16

Background

1 2 3 15 16...

|0>
1

√16
|1>

1

√16
|2>

1

√16
|14>

1

√16
|15>

1

√16

● If f(x) = 1 for the correct state |w>, it multiplies the amplitude of that state by −1 (flipping
its phase)

● For all other states, where f(x) = 0, the oracle leaves them unchanged

—

● The oracle knows the correct state by being

programmed with a specific function f(x) that

encodes the criteria for identifying the target state

● Oracle function is defined as:

Background

● P is the class of problems that have

an algorithm that can be computed

in polynomial time

● NP is the class of problems that

can be verified in polynomial time,

but may take an exponential

number of steps to solve

Background: P versus NP Problem

Background: P versus NP Problem

● Grover’s algorithm for graph coloring is an NP-complete problem

● Reduces the search time from O(N) to O(√N)

○ However, even O(√N) is still exponential since N represents an

exponentially large number of possible solutions

● The quadratic speedup is not sufficient to solve NP-complete problems

in polynomial time

Other Solutions
● Greedy algorithm

● Pros:
○ Easy to implement

○ Works well for simple problems

● Cons:
○ Can be quite slow as complexity

increases

○ Not always guaranteed

Other Solutions
● Recursive Algorithms

● Pros:
○ “Guaranteed” to eventually find a

valid configuration

● Cons:
○ High time complexity

○ Memory consumption

Why is Ours Better?

● Existing solutions have a common pattern: time and space complexities

● Grover’s algorithm offers a O(√N) time efficiency, compared to O(N)

efficiency for linear search

○ In this problem, N is k^50, where k is the number of colors in the constraint set

○ With Grover’s algorithm, O(√(k^50)) = O(k^25) efficiency compared to O(k^50) efficiency

● Lower memory requirements compared to classical algorithms

Novelty
● Grover’s algorithm itself is not new and neither is the graph coloring

problem

● Grover’s algorithm has not been applied to graph coloring for

optimizing efficiency
○ Across multiple programming languages: Qiskit (Python), Q#

● Hybrid integration of quantum algorithm to a classical problem

Impact
● Most common application is

cartography

● Efficient resource allocation via

scheduling (e.g. course

scheduling, job assignments)

● Solving puzzles and games like

Sudoku

Method
● Grover’s algorithm across

multiple programming languages

to solve graph coloring
○ Qiskit (Python), Q#, etc.

● Evaluate efficiencies by running

graph coloring on a map of US

states

input_dict = {
 "Alabama": ["Tennessee", "Georgia", "Florida", "Mississippi"],
 "Alaska": [],
 "Arizona": ["California", "Nevada", "Utah", "Colorado", "New
 Mexico"],
 …
 "Wisconsin": ["Michigan", "Minnesota", "Iowa", "Illinois"],
 "Wyoming": ["Montana", "South Dakota", "Nebraska",
 "Colorado", "Utah", "Idaho"]
}

Method: Input
constraint_set = [“red”, “green”, “blue”, “yellow”]List

Dictionary

output_dict = {
 "Alabama": “red”,
 "Alaska": “green”,
 "Arizona": “blue”,
 …
 "Wisconsin": “green”,
 "Wyoming": “yellow”
}

Method: Output

Dictionary

Method: Systems Architecture
● Model will create states for each color in the constraint set: |0>, |1>, |2>,

etc.

● Oracle for Grover’s algorithm using qiskit libraries
○ These libraries do not create the model themselves, but they have the operations that

can be used to create the circuit

● H = Hadamard transform

Method: Pseudocode from qiskit import QuantumCircuit

qc = QuantumCircuit(q, c)

qc.h(q[0])

qc.h(q[1])

qc.cx(q[0], q[2])

qc.cx(q[1], q[2])

qc.h(q[0])

qc.h(q[1])

…

qc.measure(q[0], c2[0])

qc.measure(q[1], c2[1])

Results
● Will be presented through time and space efficiencies

● Total time taken for the algorithm to execute and return a valid map

○ Will be compared to the time of other algorithms

● Number of bits and qubits used through existing libraries and methods

○ e.g. get_memory_info in Qiskit, PrivateMemorySize64 in Q#, etc.

Limitations

● The time efficiency results are comparable from classical approaches

to Grover’s algorithm, but space efficiency results are only comparable

between different programming languages

● Due to the limited number of quantum environments right now, it may

not be applicable to more complex problems

Conclusion and Future Work
● Will report how results differ from

classical approaches (are they an

improvement or not?)

● Previous studies suggest that Q# is the

most efficient as of now, because of its

optimized resource management
○ I want to see if this holds true when applied to

the graph coloring problem

● In the future, I graph coloring can be

implemented with US counties as well

References
Adams, A. J., Khan, S., Young, J. S., & Conte, T. M. (2024, April 19). QWERTY: A basis-oriented quantum

programming language. arXiv.org. https://arxiv.org/abs/2404.12603.

Brown, A. R. (2022, December 19). Playing Pool with |ψ>: from Bouncing Billiards to Quantum Search.

https://arxiv.org/pdf/1912.02207.

Cornell University. (n.d.). Graph algorithms.

https://www.cs.cornell.edu/courses/cs3110/2013sp/supplemental/recitations/rec21-graphs/rec21.html

Graph coloring. Graph Coloring - an overview | ScienceDirect Topics. (n.d.).

https://www.sciencedirect.com/topics/computer-science/graph-coloring.

Grover’s algorithm. Grover’s algorithm | IBM Quantum Learning. (n.d.).

https://learning.quantum.ibm.com/tutorial/grovers-algorithm.

Grover’s algorithm and amplitude amplification. Grover’s Algorithm and Amplitude Amplification - Qiskit Algorithms 0.3.0. (2024, April

10). https://qiskit-community.github.io/qiskit-algorithms/tutorials/06_grover.html

Thanks!

Any Questions?

