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Introduction

e ALS impairs nerve cell function in the central nervous system

e Difficult to identify in its early stages since an exact cause is elusive

e Total diagnostic time often ranges from 8 to 15 months [1]

e Leads to significant muscle weakness, atrophy, and, ultimately, complete loss
of voluntary movement

e Challenges in diagnosing ALS are compounded by the limitations of current

diagnostic practices

[1] S. Paganoni, E. Macklin, A. Lee, A. Murphy, J. Chang, A. Zipf, M. Cudkowicz, and N. Atassi, “Diagnostic timelines
and delays in diagnosing amyotrophic lateral sclerosis (ALS),” Amyotrophic Lateral Sclerosis & Frontotemporal
Degeneration, vol. 15, no. 5-6, pp. 453-456, September 2014, doi: 10.3109/21678421.2014.903974. P e
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Literature Review

2]

[3]

[4]
[5]

Image Classification
o Kushol et al. [2] - 88.0% accuracy, 0.900 F1-score

Audio Transformers
o  Kurmi et al. [3] - 84.2% accuracy, 77.8% sensitivity, 90% specificity

EEG Analysis

o Zhao and He [4] - 92% accuracy (Alzheimer’s); Oh et al. [5] - 88.25% accuracy (Parkinson's)

R. Kushol, C. Luk, A. Dey, M. Benatar, H. Briemberg, A. Dionne, N. Dupr’e, R. Frayne, A. Genge, S. Gibson, S. Graham, L. Korngut, P. Seres, R. Welsh, A.
Wilman, L. Zinman, S. Kalra, and Y. Yang, “SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and
frequency fusion transformer,” Computerized Medical Imaging and Graphics, vol. 108, 2023, doi: https://doi.org/10.1016/j.compmedimag.2023.102279.
0. P. Kurmi, M. Gyanchandani, N. Khare and A. Pillania, "Classification of Amyotrophic Lateral Sclerosis Patients using speech signals,” 2023 Third
International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 2023, pp. 172-177, doi:
10.1109/1CSCCC58608.2023.10176797.

Y. Zhao and L. He, "Deep Learning in the EEG diagnosis of Alzheimers disease,” Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in
Computer Science, vol. 9008, pp. 340-353, 2015, January 2015, doi: https://doi.org/10.1007/978-3-319-16628-5 25.

S. Oh, Y. Hagiwara, U. Raghavendra, R. Yuvaraj, N. Arunkumar, M. Murugappan, and U. Rajendra Acharya, “A deep learning approach for Parkinson’s
disease diagnosis from EEG signals,” Neural Computing and Applications, vol. 32, pp. 10927-10933, 2020, doi:

https://doi.org/10.1007/s00521-018-3689-5. ‘
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Dataset

e Model trained on the EEGET-ALS dataset
e Contains EEG recordings using Emotiv a TrOCO0~0
EPOC Flex Device e - 2K - XOX - XL

e 176 subjects, with both ALS patients and 000000
healthy individuals PAOL - NASSIa st

e Each recording session lasted
approximately 2 minutes at a sampling
frequency of 128 Hz

e Dataset comprises 1,989 EDF files across Fig. 1: EEG electrodes position with
32 channels 10-10 standard [6]

[6] T.Ngo, H. Kieu, M. Nguyen, T. Nguyen, V. Can, B. Nguyen, and T. Le, “An EEG & eye-tracking dataset of ALS patients
& healthy people during eye-tracking-based spelling system usage,” Scientific Data, 2024, doi:
https://doi.org/10.1038/s41597-024-03501-y. P e
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Data Preprocessing

e Each recording was adjusted to 120 seconds or a length of 15,360 given the
128 Hz sampling rate

e Labels: 0 - healthy individuals, 1 - ALS patients

e EDF files located in a folder beginning with ‘id’ contain data from healthy
patient

e Files located in a folder beginning with ‘ALS’ contain data from ALS patients

e Converted to a tf.data.Dataset object using the from_tensor_slices method
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Model Architecture

Transformer-based neural network
designed for binary classification
Accepts input sequences of shape
(32,120 x 128)

3 layers each featuring multi-head
attention

ReLU activations with 64, 128, and
256 neurons

Flattens before batch normalization
Sigmoid activation for binary
classification

input_1 input: | [(None, 32, 15360)] ‘
multi_head_attention_2 | input: | (None, 32, 128)
InputLayer | output: | [(None, 32, 15360)]

MultiHeadAttention output: | (None, 32, 128)

l

multi_head_attention | input: | (None, 32, 15360) layer_normalization_2 | input: | (None, 32, 128)

MultiHeadAttention | output: | (None, 32, 15360) LayerNormalization | output: | (None, 32, 128)

l

dense_2 | input: | (None, 32, 128)
Dense | output: | (None, 32, 256)

layer_normalization | input: | (None, 32, 15360)

LayerNormalization | output: | (None, 32, 15360)

flatten | input: | (None, 32, 256)
dense | input: | (None, 32, 15360) Flatten | output: | (None, 8192)
(None, 32, 64)

Dense | output:

l dense_3 | input: | (None, 8192)
- - - Dense | output: | (None, 64)
multi_head_attention_1 | input: | (None, 32, 64)
MultiHeadAttention output: | (None, 32, 64) l

dense_4 | input: | (None, 64)

Dense | output: | (None, 32)

layer_normalization_1 | input: | (None, 32, 64)
LayerNormalization | output: | (None, 32, 64)

batch_normalization | input: | (None, 32)

l BatchNormalization | output: | (None, 32)

dense_1 | input: (None, 32, 64)

Dense | output: | (None, 32, 128) dense_5 | input: | (None, 32)
| Dense | output: | (None, 1)

Fig. 2: Summary of Transformer model
architecture



. I ICAC T The 17th International Conference on Advanced Computer Theory and Engineering Hefei, Anhui, China | September 13-15, 2024
2024 I =+t R B ENERSIEERS N 2024%9R13-158 HE-RHK-SE

Training

e Random train-validation-test split of 70%-15%-15%

e Batch size of 16

e A100 Google Colaboratory GPU instance

e 403.88 seconds over the course of 70 epochs

e Compiled with the Adam optimizer at a learning rate of 107*

e Binary cross-entropy loss function
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Results

e Five performance metrics: accuracy, loss, AUC, precision, and recall

Training and Validation Accuracy

Training and Validation AUC
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Fig. 3: Training and
validation accuracy plot

Fig. 4: Training and
validation AUC plot

Precision
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Fig. 5: Training and
validation precision plot

Recall

Training and Validation Recall
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Fig. 6: Training and
validation recall plot
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Results (cont.)

TABLE I: Model Performance Metrics

EEEEEE

Fig. 7: Training and validation
loss plot

Metric Training | Validation | Testing

Accuracy | 98.49% 99.33% 99.33%

Loss 0.0954 0.0581 0.0630

AUC 0.9787 0.9974 0.9963

Precision | 98.48% 100.0% 100.0%

Recall 95.31% 97.33% 96.36%
P e
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Conclusion
e Overcomes the significant delay in reaching a definitive diagnosis

o Two-minute recording vs. 8-15 months

Achieves remarkable accuracy compared to other models
o 99.33% accuracy in testing and validation

Potential to be a valuable tool in clinical settings

Enables earlier intervention
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Future Work

e Incorporate more diverse EEG recordings from a larger and more varied
cohort of ALS patients

e Use additional features such as eye-tracking data to further improve
diagnostic accuracy

e User-friendly software application that integrates the model

e Promise of improved outcomes and enhanced quality of care for ALS
patients through a two-minute recording
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Questions?

Check out my code:
https://github.com/sjain2025/EEG-ALS-Diagnosis




