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Abstract—Voice disorders significantly impact an individual’s
ability to communicate verbally, particularly affecting the el-
derly community. Diagnosing these disorders is complex, often
hindered by the limitations of traditional imaging techniques.
This study presents a novel deep learning framework for voice
disorder detection through audio classification, addressing the
challenge of diagnosing these disorders that affect a large
proportion of elderly adults in America. Our model, ConVox,
utilizes a sequential stack of one-dimensional convolutional neu-
ral networks to conduct binary classification of voice disorders.
We leverage four large datasets: Advanced Voice Function
Assessment Databases, Saarbrücken Voice Database, TORGO
Database, and UA Speech Database, which together comprise
22,883 audio samples in Waveform Audio File Format. The
model achieved notable accuracies of 99.89% in training, 99.91%
in validation, and 99.74% in testing, outperforming existing
models. With an area-under-curve of 0.999995, precision of
0.9972, and recall of 0.9994, our model demonstrates exceptional
performance in accurately identifying voice disorders with a
very low rate of false positives and false negatives. Additionally,
this model demonstrates promising performance across multiple
languages and voice pathologies. ConVox’s comprehensiveness
and high accuracy demonstrate that it is a promising tool for
audio classification, potentially enhancing healthcare outcomes
for individuals with voice disorders.

Index Terms—voice disorder detection, deep learning, CNN

I. INTRODUCTION

Voice disorders are an extensive issue worldwide, with a
notable prevalence among the elderly. In fact, Cleveland Clinic
[1] quantifies that 3-9% of the U.S. population experiences a
voice disorder at some point in their lives. These disorders can
severely damage one’s ability to speak, manifesting in various
forms of muscle impairment, fatigue, and tissue damage.
The implications of these conditions are profound, affecting
communication, social interaction, and overall quality of life.

According to the American Speech-Language-Hearing As-
sociation [2], a disturbance in the respiratory system, nervous
system, laryngeal muscles, pharynx, or oral cavity are the most
common causes of voice disorders. Structural causes such as

vocal folds—which can develop nodules, polyps, or cysts—can
lead to voice disorders. These structural abnormalities can
result from repeated trauma or misuse of the voice, causing
changes to the vocal fold tissue that damage normal vocal
function. On the other hand, neurogenic causes originate from
abnormalities in the central or peripheral nervous system.
Spasmodic dysphonia (SD) is one such disorder which origi-
nates from the basal ganglia of the brain. This disorder affects
the neural control of the larynx, causing spasms in speech [3].
These conditions are just a few out of the various causes and
classes of voice disorders.

Diagnosing voice disorders presents a significant challenge
for healthcare professionals due to the complexity and variety
of potential causes. An effective, automated voice disorder
detection system would significantly advance efforts to en-
sure the wellbeing of individuals at risk for voice disorders.
Currently, existing systems, primarily for neurogenic voice
disorders, are diagnosed with ineffective imaging techniques.
For example, Ludlow et al. [4] show that SD is challenging to
diagnose because the larynx often appears normal on standard
imaging tests. Hence, in this paper, we introduce ConVox,
a deep learning model that uses a sequential stack of one-
dimensional convolutional neural networks (CNNs) to detect
voice disorders through analyzing speech samples.

II. LITERATURE REVIEW

A. Mel-Frequency Cepstral Coefficient

Machine learning approaches for voice disorder classifica-
tion have been studied for quite some time. Most models rely
heavily on the robustness of their data processing, requiring
discrete values from an originally continuous signal. Derived
from the Short-Time Fourier Transform, the Mel-frequency
cepstral coefficient (MFCC) is one such method [5]. The
MFCC is mapped to the Mel scale, an approximation of how
loud humans perceive pitch, and is represented as a magnitude.
Peng et al. [6] followed a similar process, but utilized a



logarithmic scale rather than a pure Mel scale. Verde et al. [7]
mentioned several other features often used for classification:
Fundamental Frequency (F0), Jitter, Shimmer, Harmonic to
Noise Ratio, and the first and second derivatives of the
cepstral coefficients. As the researchers point out, F0 has no
exact formula but is only determined through approximations
such as the Hilbert-Huang Transformation. Thus, the standard
feature is the MFCC.

B. Deep Learning Approaches

Deep Learning has recently received notable attention for
its versatility in image classification, text generation, speech
recognition, and environmental modeling. Consequently, it
has been applied to the voice disorder diagnosis problem as
well. Chainani et al. [8] used deep learning as a supplement
to their convolutional neural network and Long-Short Term
Memory architecture. Combining a 1-D CNN, an LSTM layer,
and SinRU activation function, they achieved an accuracy
of 70.62% for classifying four voice disorders taken from
the Saarbrücken Voice Database (SVD). Similarly, [6] used
a deep transfer learning approach on the VOICED set. Their
model consisted of a CNN and a Support Vector Machine
Classifier. To decrease feature dimensionality, they employed
linear local tangent space alignment. Their method achieved a
sensitivity of 99.6%, specificity of 98.9%, accuracy of 98.5%,
and F1 score of 99.6%. Finally, Fang et al. [9] pitted a deep
neural network (DNN) against a support vector machine and
a Gaussian mixture model. On the Massachusetts Eye and Ear
Infirmary dataset, their DNN scored a higher accuracy, with a
99.32%, 94.26%, and 90.52%, demonstrating varying results
among different datasets.

Joshy et al. [10] also made a DNN and CNN, but their goal
was to instead classify the severity of dysarthria as opposed
to identifying it. On the UA Speech dataset, their accuracy
was 96.18%; on TORGO, their accuracy was 93.24%. The
highest accuracy reached for severity classification was 99%
in the study conducted by Joshy et al. [10], where the authors
proposed a novel cross-modal network structure, combining
audio and video recordings from UA Speech, extracting the
MFCC, and inputting into their 2-D CNN. Despite the success
in severity classification, the same cannot be said for dysarthria
and voice disorder detection. The greatest was achieved by
Verde et al. [7], who had an accuracy of 90% on the MEEI
dataset. Even then, they could not replicate it on SVD and
VOICED. Furthermore, attempts made by [12], [13], [14],
[15], [16], [17], [18], and [19] achieved accuracies of only
57%, 89%, 86%, 79%, 62.87%, 71%, 82%, and 57.5%,
respectively.

It is clear that there exists few models that can break the
90% mark, with a few exceptions ( [20], [21], [22], [23]). As
a result, we propose a deep learning framework that conducts
binary classification to identify voice disorders. Rather than
using only one or two datasets, we will use four large datasets
containing audio recordings.

III. METHODOLOGY

Source code for the project can be found at:

https://github.com/sjain2025/Voice-Disorder-Classification

A. Data Acquisition

We utilized four large datasets to train ConVox: the
Advanced Voice Function Assessment Databases (AVFAD),
Saarbrücken Voice Database, TORGO Database, and the UA
Speech dataset. Each of these databases consisted of voice
recordings in Waveform Audio File Format (WAV) from
individuals who were either healthy or diagnosed with a vocal
pathology. The TORGO and UA Speech datasets compose of
English speakers, whereas the SVD and AVFAD datasets are
in German and Portuguese respectively. The sampling rates
for the AVFAD, SVD, TORGO, and UA Speech datasets are
48, 50, 16, and 16 kHz respectively.

The AVFAD dataset consists of 709 individuals: 363 who
are healthy, and 346 who have a voice disorder. Of the 8,648
uncompressed files, we used the 1,553 files which were in
WAV format and in the range between 2 to 8 seconds. We
also used all 6,602 audio files from the TORGO Database
that fit these criteria. In addition, we initially extracted 1,494
total WAV files of sentences from SVD: 632 were recordings
from healthy individuals and 862 were recordings from people
with voice disorders. From this database, 732 fit the criteria
and were used in the final concatenated dataset. Finally, the
UA Speech Database consists of 75,364 voice recordings,
from which we randomly selected 14,000 WAV files to train
the model. Nonetheless, the model was tested on all 75,364
voice recordings from the UA Speech Database to ensure
generalizability and prevent overfitting. By doing so, we main-
tained balance in the sizes of all four datasets, ensuring that
ConVox was both robust and feasible to process. Altogether,
the concatenated dataset consisted of 22,883 WAV files.

B. Preprocessing

We resampled all of the WAV files in each dataset to 16 kHz,
and then filtered out all files that were less than 2 seconds and
more than 8 seconds. We chose this range because training
on excessively long files was unnecessary, as disorders could
be accurately detected within the optimal 2 to 8 seconds of
speech. We also omitted files shorter than 2 seconds because
these audio files predominantly consisted of speakers making
vowel sounds, without capturing complex sounds or sentences.
The filtered and resampled files were then padded with zeros
to make all sequences a uniform 8 seconds long at a sampling
rate of 16 kHz. Using the librosa library, we extracted MFCCs
from each of these files and used them for training the model.
The MFCCs function on a perceptual scale, which also better
captures the timbre of the sounds.

Mel(f) = 2595 log

(
1 +

f

700

)
(1)

Using the formula in (1), a frequency that is in Hertz
(ƒ) can be transformed to the Mel scale. Files of healthy

https://github.com/sjain2025/Voice-Disorder-Classification


speakers were assigned a ‘0’, and files of pathological speakers
were assigned a ‘1’. Then, we combined all of the eight
second long sequences into a tf.data.Dataset object
using the from_tensor_slices method. Furthermore, we
implemented a batch size of 32.

Fig. 1. 1-D CNN Structure [25]

C. Model

The model that we constructed is a sequential neural net-
work designed for binary classification, utilizing a combination
of convolutional and dense layers to process one-dimensional
input data. As illustrated in Fig. 1, the 1-D CNN structure
begins with an input signal represented as a one-dimensional
array of data points. This input signal undergoes multiple
stages of convolution using 1-D convolutional layers. Each
convolutional layer applies a set of filters to the input signal,
extracting local features and producing a series of feature
maps. The feature maps generated by the first convolutional
layer are then fed into subsequent convolutional layers for
further processing.

The summary of the model in Fig. 2 provides a detailed view
of the layer configurations and parameter counts, reflecting
its structure and complexity. The architecture features three
convolutional layers (Conv1D), each followed by max-pooling
(MaxPooling1D), which helps in extracting hierarchical
features and reducing dimensionality. The convolutional layers
use ReLU activation and ’same’ padding to introduce nonlin-
earity. Next, the model flattens the output and passes it through
three dense layers with decreasing units and ReLU activation,
before concluding with a final dense layer with a sigmoid
activation function for binary classification. For evaluation, we
tracked accuracy, area under the curve (AUC), loss, recall, and
precision.

D. Training

Our dataset consists of 22,883 audio sequences, each eight
seconds long, encompassing recordings from both pathological
and healthy speakers. We applied a random split of 70%
training data, 20% validation data, and 10% testing data. This Fig. 2. Model Summary



stratification ensures that ConVox was trained on a substantial
portion of the data while also being rigorously validated and
tested on unseen samples. To optimize the training process,
we utilized an A100 Google Colaboratory GPU instance,
known for its high-performance computing capabilities. The
model training spanned 1048.96 seconds over the course of 20
epochs. During this period, we employed the Adam optimizer
at a learning rate of 0.0001, which was optimal to balance the
speed of convergence with the stability of the training process.

Binary cross-entropy loss, which the model was trained on,
measures the performance of a classification model whose
output is a probability value between 0 and 1. The loss for
a single prediction is defined by the equation:

LBCE = − 1

n

n∑
i=1

(
Yi · log Ŷi + (1− Yi) · log(1− Ŷi)

)
(2)

where:
• LBCE is the Binary Cross-Entropy (BCE) loss.
• n is the number of samples.
• Yi is the true label for the i-th sample. Yi can take values

of 0 or 1.
• Ŷi is the predicted probability for the i-th sample that the

label is 1. Ŷi is a value between 0 and 1.

IV. RESULTS AND DISCUSSION

We evaluated ConVox on five performance metrics: accu-
racy, recall, precision, loss, and AUC. Accuracy was given by
the ratio of correctly predicted instances—both true positives
(TP) and true negatives (TN)—to the total number of instances.

AUC is another performance metric for binary classification
problems that we utilized to evaluate ConVox’s performance. It
represents the area under the Receiver Operating Characteristic
curve, which plots the true positive rate (TPR) against the false
positive rate (FPR) at various threshold settings. The AUC
value ranges from 0 to 1, where a value of 1 indicates a model
with perfect accuracy and a value of 0.5 suggests a model with
no discriminative ability (equivalent to random guessing). The
equations for TPR, also known as recall, and FPR, also known
as precision, are given as follows:

Recall = TPR =
TP

TP + FN
(3)

Precision = FPR =
FP

FP + TN
(4)

The AUC metric is particularly useful because it provides
a single scalar value that summarizes the performance of the
model across all possible classification thresholds. It is given
by the following equation:

AUC =

∫ 1

0

TPR d(FPR) (5)

The equation for AUC in discrete form is given as follows:

AUC =

n−1∑
i=1

(FPRi+1 − FPRi) · (TPRi+1 + TPRi)

2
(6)

TABLE I
COMPARISON OF DATASET PERFORMANCE

Dataset
AVFAD UA Speech TORGO SVD TOTAL

ConVox 100.00% 99.72% 99.59% 99.86% 99.74%
[7] — — — 80% —

[14] — ✓ ✓ — 86%
[17] — — — 71% 71%
[20] ✓ ✓ — — 93.36%
[21] — — — 97.80% —
[22] — — 97.73% — 97.73%
[23] — — — 93.90% —
[24] 92.70% — — 90.90% —

— Dataset was not used or total accuracy was missing.
✓ Dataset was used, but accuracy was not provided for

that dataset.

Table 1 shows ConVox’s accuracy specific to each of the
four datasets that we trained on. For the TORGO, Saarbrücken,
and UA Speech Databases, the model was evaluated on all
6,602, 728, and 1,553 audio recordings, respectively. In addi-
tion, although the model was trained on 20% of the UA Speech
Database, we evaluated it on all 75,364 audio recordings,
finding an accuracy of 99.72%. ConVox achieved an accuracy
of 99.59% on TORGO, 99.86% on Saarbrücken, and 100%
on AVFAD. Other studies recorded accuracies in the range
between 71% and 97.73%, lower than all of the recorded
accuracies for our model.

Altogether, ConVox outperformed previous studies while
being trained on more data than in prior research, making it
more robust and accurate. Additionally, we trained our model
on a corpus of data that contained samples of speakers in three
different languages. Hence, through ConVox, we are moving
towards language-agnostic voice disorder detection.

Fig. 3. Training and Validation Accuracy



Fig. 4. Training and Validation Precision

Fig. 5. Training and Validation AUC

Fig. 6. Training and Validation Recall

Fig. 7. Training and Validation Loss

Accuracy, AUC, precision, and recall all improved over
the 20 epochs the model trained on, as shown in Fig. 3-6.
The consistent improvement across these metrics in both the
training and validation data indicates that the model not only
fits to the training data well but also generalizes effectively
to new, unseen data. This is crucial for ensuring that the
model performs reliably in real-world applications, where it
will encounter diverse voice samples beyond those seen during
training. In addition, the binary cross-entropy loss decreased
over the 20 epochs as illustrated in Fig. 7, suggesting that
the model improves its ability to assign high probabilities to
true positive samples and low probabilities to true negative
samples. This reduction in loss reflects a more precise align-
ment between the model’s predictions and the actual labels,
enhancing the model’s overall reliability and effectiveness in
distinguishing between healthy and pathological voices.

V. CONCLUSION

Research on voice disorder classification as a tool to detect
diseases has been the subject of scrutiny for quite some
time now. With the advent of more robust machine learning
architectures, it is more possible than ever to discern and
diagnose based on a simple audio recording. In this study, we
developed a novel sequential 1-D CNN that can effectively
and accurately detect voice disorder through a short audio
recording. Ultimately, we reached accuracies of above 99%
in all the datasets, surpassing all existing attempts. Using four
large datasets (AVFAD, SVD, TORGO, and UA Speech), we
filtered for the MFCC as our feature being fed into ConVox
and designed a pipeline that pre-processes the audio data,
extracts features, and trains the model for high accuracy.

Despite promising results, we are still interested in other
machine learning approaches such as traditional LSTMs to
further enhance ConVox’s performance. Even with our diver-
sified dataset, future research should focus on expanding their
data to include a wider range of voice samples and disorders,



enhancing ConVox’s robustness and generalizability. Addi-
tionally, it would be interesting to explore the integration of
multimodal data, using not only voice analysis, but also other
biometric indicators. We are currently focused on optimizing
our architecture for both space and time efficiency. As we go
forward, however, we will expand from binary classification
to voice disorder categorization.

The implications of our results are profound. Early and
accurate detection of voice disorders is imperative when it
comes to treatment intervention and the patient’s quality of
life. Moreover, our machine learning model can be seam-
lessly integrated into Internet of Things technology, and more
specifically, healthcare applications. We also seek to develop a
user-friendly application for real-time voice disorder detection,
providing a practical tool for clinicians and individuals alike to
facilitate early diagnosis and intervention. Ultimately, ConVox
provides a way for patients and at-risk individuals to find
solidarity in knowing that their health can be monitored
through an 8-second recording.
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