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Abstract—Neurodegenerative disorders are the leading cause of
physical disability worldwide. In particular, amyotrophic lateral
sclerosis (ALS) is one such condition that significantly impacts
the quality of life for millions by impairing nerve cell function
in the central nervous system. Despite extensive research, ALS
remains difficult to diagnose in its early stages and the exact
cause is largely unknown, with contemporary methods taking up
to 15 months for a definitive diagnosis. Electroencephalogram
(EEG) analysis, a non-invasive method for recording brain
electrical activity, has shown promise in identifying subtle
neural changes associated with neurodegenerative disorders.
Transformers, known for their ability to capture complex data
dependencies, offer a novel framework for analyzing EEG
signals with high temporal resolution. This study introduces a
Transformer-based approach to diagnose ALS by leveraging the
EEG and eye-tracking dataset of ALS patients (EEGET-ALS),
comprising a total of 1,989 recordings. The model achieved
exceptional accuracies of 98.49% in training and 99.33% in both
validation and testing. Furthermore, with an area under the curve
(AUC) of 0.9963, precision of 100.0%, and recall of 96.36%
in testing, the model demonstrates promise in enhancing the
accuracy and timeliness of ALS diagnosis with a low rate of false
positives and false negatives. Overall, this approach represents a
significant advancement in the field of neurodegenerative disease
diagnosis, potentially improving patient outcomes and quality of
life through a two-minute recording.
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I. INTRODUCTION

Amyotrophic lateral sclerosis, also known as ALS or Lou
Gehrig’s disease, is a progressive neurodegenerative disorder
that impairs the function of nerve cells in the spinal cord and
brain. According to the CDC [1]], this gradual deterioration and
death of motor neurons leads to significant muscle weakness,
atrophy, and, ultimately, complete loss of voluntary movement.
As the disease progresses, individuals may experience severe
disability, requiring assistance with daily activities and relying
on ventilatory support.

Despite significant research efforts, the exact cause of ALS
remains largely unknown and difficult to identify in the early
stages. In fact, the ALS Association [2] quantifies that only
5% to 10% of all cases are linked to family history. On the

other hand, over 90% of individuals diagnosed with ALS have
no genetic mutation linked to the condition. Not only are
the causes of ALS elusive, but also diagnosing the disorder
is lengthy and complicated. A study by Pagnoni et al. [3]],
consisting of 304 individuals with ALS, found that each patient
saw an average of three physicians before their condition
was confirmed. Additionally, the researchers accentuate that
total diagnostic time ranged from 8 to 15 months, prolonging
the period of uncertainty and leading to potential delay in
treatment.

The challenges in diagnosing ALS are compounded by the
limitations of current diagnostic practices. According to the
National Institute of Neurological Disorders and Stroke [4],
there is no single measure or test that can definitely diagnose
ALS. Furthermore, in the status quo, medical diagnosis of the
condition often involves a subjective evaluation of the patient
done at the discretion of a physician, according to another
article from the ALS Association [5]. Contemporary measures
that primarily rely on a patient’s health history to diagnose
the disorder are ineffective. University of Michigan Health
[6] also emphasizes that diagnosing ALS can be particularly
challenging because many neurologic diseases cause similar
symptoms, necessitating a battery of tests to exclude other
conditions. Hence, there is an inherent need for an accurate
tool to enable early detection and intervention of ALS.

In recent years, advancements in machine learning and
artificial intelligence have opened new opportunities for
improving diagnostic accuracy and efficiency. According to a
2021 study by Dukic et al. [7], EEG analysis, a non-invasive
method for recording electrical activity in the brain, has shown
promise in capturing subtle neural changes associated with
ALS. However, the integration of machine learning techniques
into EEG analysis for ALS remains underexplored.

This paper introduces a Transformer-based approach to
diagnose ALS via EEG analysis. Transformers, known for
their ability to capture complex dependencies and patterns in
data, offer a novel framework for analyzing EEG signals with
high temporal resolution and sensitivity [8]]. By leveraging



Transformer models, this study aims to enhance the accuracy
and timeliness of ALS diagnosis, addressing current gaps in
diagnostic practices and providing a robust tool for early
detection and intervention.

II. LITERATURE REVIEW
A. Image Classification

Brain magnetic resonance imaging (MRI) is a biomarker
that has the potential to effectively diagnose ALS through
medical image analysis. Kushol et al. [9] proposed leveraging
vision transformer architecture to distinguish between ALS
subjects and the control group of healthy individuals in
their study, achieving an accuracy of 88.0% and an Fl1-score
of 0.900. Their results suggest a promising approach for
expediting ALS diagnosis; however, their level of accuracy
represents a modest improvement over existing diagnostic
tools. Furthermore, MRI scans primarily focus on structural
changes, without capturing the subtle neural changes that occur
in early stages of the disease.

B. Audio Transformers

In addition to MRI, speech analysis has emerged as
a valuable tool for diagnosing ALS. The advantage of
speech classification lies in its non-invasive and accessible
nature. Unlike MRI, which requires specialized equipment
and often involves logistical challenges, speech analysis
can be performed using standard audio recording devices
and software. Kurmi et al. [10] developed a machine
learning model that assesses voice recordings to distinguish
between ALS patients and healthy individuals. The researchers
achieved an accuracy of 84.2%, sensitivity of 77.8%, and
specificity of 90% using support vector machine (SVM)
classification. Thus, voice classification does not offer a
notable advantage over neuroimaging in terms of accuracy,
but it holds promise in enabling frequent and convenient
monitoring of patients.

C. EEG Analysis

EEG analysis has emerged as a valuable non-invasive
method for capturing electrical activity in the brain. Recent
studies have explored the integration of machine learning
techniques with EEG data to improve diagnostic accuracy
for various neurodegenerative conditions. Zhao and He [11]]
developed a deep learning model to identify Alzheimer’s
disease through EEG analysis. They recorded an accuracy of
92% after training on an SVM model, substantially higher
than studies with image and audio classification approaches.
In another study, Oh et al. [12] created an automatic
detection system for Parkinson’s disease that leverages a
13-layer convolutional neural network (CNN) architecture.
Their model achieved an accuracy, sensitivity, and specificity
of 88.25%, 84.71%, and 91.77%, respectively. Altogether,
machine learning analysis on EEG data has attained accurate
results for other neurodegenerative disorders with a low rate
of false positives and false negatives. In this study, the EEG
analysis approach was utilized to distinguish between ALS

patients and healthy individuals. Instead of implementing
SVM or CNN, however, the model was built on Transformer
architecture to attain results with high accuracy and efficiency.

III. METHODOLOGY

Source code for the project is located at:
https://github.com/sjain2025/EEG- ALS-Diagnosis

A. Dataset

The model was trained on the EEGET-ALS dataset [[13],
which contains eye-tracking (ET) and EEG recordings from
six ALS patients and 170 healthy individuals. Each participant
engaged in nine recording sessions lasting approximately 2
minutes, corresponding to a common human action or demand.
Data were recorded once for each healthy individual in a
laboratory setting, while data were recorded multiple times
for ALS patients at their home. During these sessions, EEG
data were captured at a sampling frequency of 128 Hz using
the Emotiv EPOC Flex device, which features 32 electrodes
configured in a 10-10 system. Fig. 1 illustrates the positioning
of the EEG electrodes in this 10-10 standard. The EEG data are
stored in European Data Format (EDF). The dataset comprises
1,989 EDF files with EEG data across 32 channels.

B. Data Preprocessing

EEG data were collected at a sampling rate of 128 Hz for
approximately two minutes. In order to account for variance
in the amount of time between different recordings, all
samples were adjusted to 120 seconds—or a length of 15,360
given the 128 Hz sampling rate—using the numpy .resize
method, which forms a new array with a given length. After
converting EDF data into numpy arrays of standard length,
each array was assigned a label: O for healthy individuals and
1 for ALS patients. In the EEGET-ALS dataset, EDF files
located in a folder beginning with ‘id’ contained data from
healthy patients. On the other hand, files located in a folder
beginning with ‘ALS’ contained data from ALS patients.
Finally, all 1,989 numpy arrays with EEG data and labels
were converted to a tf.data.Dataset object using the
from_tensor_slices method.
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Fig. 1: EEG electrodes position with 10-10 standard [|13]]


https://github.com/sjain2025/EEG-ALS-Diagnosis

C. Model Architecture . .
input_1 input: | [(None, 32, 15360)]
The model constructed for this study is a Transformer-based TnputLayer | output: | [(None, 32, 15360)]
neural network designed for binary classification. The model
architecture is depicted in Fig. 2. It begins with an input layer

designed to accept sequences of shape (32, 120 x 128). Next, multi_head_attention | input: | (None, 32, 15360)
the model employs three Transformer layers, each featuring MultiHeadAttention | output: | (None, 32, 15360)
multi-head attention with 4 heads and a key dimension of

64. After each multi-head attention operation, the output is y

layer_normalization | input: | (None, 32, 15360)

normalized using layer normalization with an epsilon of 10~6
to ensure numerical stability. These outputs are then passed
through dense layers with ReLU activations, increasing in size

LayerNormalization | output: | (None, 32, 15360)

from 64 to 128 to 256 neurons in successive layers. dense | input: | (None, 32, 15360)
Following the Transformer layers, the model flattens the Dense | output: | (None, 32, 64)

output and includes additional dense layers with ReLU

activations, progressively reducing the dimensionality to 64 Y

and then 32 neurons, before applying batch normalization. The multi_head_attention_1 | input: | (None, 32, 64)

final output layer is a dense layer with a sigmoid activation MultiHeadAttention | output: | (None, 32, 64)

function, as the model is designed for binary classification

tasks.

layer_normalization_1 | input: | (None, 32, 64)
D. Training LayerNormalization | output: | (None, 32, 64)

A random split of 70% for training data, 15%
for validation data, and 15% for testing data was
applied to the dataset comprising 1,989 samples using the
custom generate_train_test_val_splits method.
Each subset was then batched with a size of 16 for
efficient training and evaluation. A learning rate scheduler, multi_head attention 2 | input: | (Nome, 32, 128)
ReduceLROnPlateau, was integrated to reduce the learning MultiHeadAttention | output: | (None, 32, 128)
rate by a factor of 0.5 if the validation loss did not
improve for 3 consecutive epochs, helping to fine-tune the
model during training. The model trained using an A100 layer normalization 2 | input: | (None, 32, 128)
Google Colaboratory GPU instance, which is known for LayerNormalization | output: | (None, 32, 128)
its high-performance computing capabilities. The training
spanned a total of 403.88 seconds over the course of 70
epochs, demonstrating its lightweight capabilities. Compiled
with the Adam optimizer at a learning rate of 10~%, the model
uses binary cross-entropy as its loss function. Its equation is
given as follows: flatten | input: | (None, 32, 256)

N Flatten | output: (None, 8192)

1
Loss = N [yi log(9:) + (1 — y;) log(1 — ;)] (1)

=1

dense_1 | input: | (None, 32, 64)
Dense | output: | (None, 32, 128)

dense 2 | input: | (None, 32, 128)

Dense | output: | (None, 32, 256)

dense_3 | input: | (None, 8192)

where N is the number of samples, y; is the true label, and
Dense | output: | (None, 64)

y; is the predicted probability of the positive class. This loss
function is particularly suited for binary classification tasks as
it measures the performance of a classification model whose dense 4 | input: | (None, 64)
output is a probability value between 0 and 1. Dense | output: | (None, 32)

IV. RESULTS AND DISCUSSION
Y

A. Performance Metrics batch_normalization | input: | (None, 32)

The model was evaluated on five performance metrics: BatchNormalization | output: | (None, 32)
accuracy, loss, AUC, precision, and recall.

Accuracy measures the overall correctness of the model
by comparing the number of correct predictions to the total
number of predictions. It is given by the equation:

dense_5 | input: | (None, 32)

Dense | output: | (None, 1)

Accuracy — TP+TN @) Fig. 2: Summary of Transformer model architecture
YT TP+TN+FP+FN




where T'P is the number of true positives, T'N is the number
of true negatives, F'P is the number of false positives, and
F'N is the number of false negatives.

AUC measures the ability of the model to discriminate
between positive and negative classes. It is defined as the area
under the Receiver Operating Characteristic (ROC) curve. The
ROC curve plots the true positive rate (TPR) against the false
positive rate (FPR):

TPR = _Tr 3)
~ TP+ FN
FP
FPR = FP+TN @

A high AUC value indicates better model performance, with
a value of 1 representing a perfect model and a value of 0.5
representing random guessing. The formula for AUC is:

1
AUC = / TPR(FPR) d(FPR) (5)
0

In discrete form, AUC is given by the equation:

n—1
TPR; ;1 + TPR;
AUC = ;(FPRZ-H — FPR;) - (“2> (6)
where n is the number of thresholds and FPR; and TPR;
are the false positive rate and true positive rate at the i-th
threshold, respectively.

Precision measures the accuracy of the positive predictions
and is given by:

TP

Precision — — 1 7
recision TP+ FP 7

High precision indicates that the model has a low FP rate.

Recall, also known as TPR or sensitivity, measures the
model’s ability to identify all relevant positive instances. Its
equation is given in (3). High recall indicates that the model
has a low FN rate. The model’s results on these five metrics
is shown in Table 1.

B. Performance Metrics

TABLE I: Model Performance Metrics

Metric Training | Validation | Testing
Accuracy | 98.49% 99.33% 99.33%
Loss 0.0954 0.0581 0.0630
AUC 0.9787 0.9974 0.9963
Precision | 98.48% 100.0% 100.0%
Recall 95.31% 97.33% 96.36%

With a testing accuracy of 99.33%, AUC of 0.9963,
precision of 100.0%, and recall of 96.36%, the model
significantly outperforms those created in other studies.
Moreover, as portrayed in Fig. 3-6, accuracy, AUC, precision,
and recall all improved over the 70 epochs. Hence, the
model demonstrates exceptional performance and reliability,
making it a highly effective tool for real-world applications.
In addition, loss decreased over the training period as shown
in Fig. 7, demonstrating the model’s capability to learn
effectively and generalize well to unseen data.
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Fig. 3: Training and validation accuracy plot
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Fig. 4: Training and validation AUC plot
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Training and Validation Recall
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Fig. 6: Training and validation recall plot
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Fig. 7: Training and validation loss plot

C. Comparative Experiments

The model developed in this study offers significant
advantages over existing ALS diagnostic tools and methods.
The first issue with previous methods is the significant delay
in reaching a definitive diagnosis. Campos et al. [14] analyzed
the diagnostic pathway for 1,405 ALS patients from four
different countries, finding that the median delay was 11
months from first symptom onset. In response to this issue,
Babu et al. [15] developed a novel diagnostic tool aimed at
expediting ALS diagnosis. Currently, their ”thinkALS” tool is
the leading solution in the market, reporting less than 4-week
wait times for diagnosis. Nonethless, their technology still
faces limitations in terms of efficiency; on the other hand, this
study’s Transformer model substantially enhances diagnostic
speed, achieving results in just two minutes.

Another limitation of ALS diagnostic tools is the low
performance and effectiveness of existing machine learning
methods. For instance, in the study conducted by Tafuri

et al. [16], researchers created a machine learning-based
classification pipeline to distinguish ALS patients from healthy
individuals using MRI scans. Despite offering a promising
approach to characterize brain abnormalities via radiomics,
the model only achieved 81.1% accuracy with the Support
Vector Machine (SVM) algorithm. In another recent study,
Alzahrani et al. [[17] predicted ALS using a deep learning
approach. Their average accuracy ranged between 82% and
87% with an F-score of approximately 86%. Geevasinga et al.
[18] had similar results in their study that assessed a novel
ALS diagnostic index (ALSDI). The researchers found 83.5%
diagnostic accuracy, 84% specificity, and 83.3% sensitivity in
testing, suggesting that these models are not effective enough
for clinical application in the status quo.

Furthermore, logistic regression algorithms also lack results
with high accuracy. Vu and Le [19] found an AUC
score of 87.90% in their study that implemented the least
absolute shrinkage and selection operator (LASSO) regression
algorithm for ALS diagnosis. The highest performance was
recorded by Wang et al. [20], who implemented a longitudinal
speech transformer to predict ALS progression and found an
AUC of 91.0%. While Transformer-based approaches are the
most effective, they are yet to demonstrate accuracies that are
high enough for clinical application. Despite the limitations of
previous machine learning approaches, the model in this study
achieved 99.33% accuracy for both validation and testing.
Thus, it is a significant improvement from other solutions on
the market.

V. CONCLUSION

The Transformer-based approach presented in this study
offers a significant advancement in the early and accurate
diagnosis of ALS through the analysis of EEG signals.
By leveraging the EEGET-ALS dataset, the model achieved
exceptional performance metrics, including a testing accuracy
of 99.33%, an AUC of 0.9963, precision of 100.0%, and recall
of 96.36%. These results not only surpass existing diagnostic
methods but also highlight the potential of Transformer models
in capturing complex dependencies within EEG data. The
robustness and high accuracy of this model suggest it could
be a valuable tool in clinical settings, potentially reducing the
diagnostic time and improving patient outcomes by enabling
earlier intervention.

In the future, the research conducted in this study could be
expanded upon by incorporating more diverse EEG recordings
from a larger and more varied cohort of ALS patients to
enhance the generalizability and robustness of the model.
Additionally, the Transformer architecture could be refined
in future research by exploring different hyperparameter
configurations and incorporating additional features such as
eye-tracking data to further improve diagnostic accuracy.
Moreover, a user-friendly software application that integrates
the model could be developed, enabling clinicians to utilize
this tool in a practical, real-world setting.

Overall, the model developed in this study heralds a new
era in medical diagnostics, with the promise of improved



outcomes and enhanced quality of care for ALS patients
through a two-minute recording.
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