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Abstract—Falls are a major cause of injury and death among
the elderly population, particularly in unsupervised settings
where victims often remain unattended for extended periods
of time. Such incidents can lead to long-term physical and
mental disturbances such as fractures, skin burns, blood loss,
and trauma. A reliable and effective fall detection system can
ensure that support is provided immediately, improving chances
of recovery for victims. A diverse range of fall detection methods
have been studied and tested, but most have high false positive
rates and limited robustness in real-world scenarios. In this study,
we present LapseNet, a hybrid convolutional neural network with
long short-term memory to detect falls in indoor settings. We
utilized data from four publicly available sources, with a total of
250 videos for training and testing the model, which distinguishes
between a) falls and b) activities of daily living. LapseNet achieved
a training accuracy of 99.43% and a promising testing and
validation accuracy of 100%. These results demonstrate the
potential to significantly improve elderly care and safety by
enabling timely interventions and reducing the risk of long-term
complications from falls.

Index Terms—fall detection, deep learning, CNN, LSTM

I. INTRODUCTION

Collapses among the elderly remains a prominent issue
worldwide, as victims are often unable to take immediate
safety measures due to resultant immobility. According to the
Centers for Disease Control and Prevention [1], 37% of the
14 million adults in the United States who experienced a fall
required medical attention from 2012 to 2018. A majority of
this group includes senior citizens, with 50% of falls among
individuals aged 70 or older resulting in injuries needing med-
ical treatment, according to Vaishya and Vaish [2]. Particularly
in the United States, collapses often occur among individuals
in isolated places or residents who live alone. Isolated victims
of falls, while immobile, are often left helpless for extended
periods of time, which can severely damage their mental and
physical health.

An effective, lightweight fall detection system would sig-
nificantly advance efforts to ensure the well-being of the
elderly. LapseNet utilizes long short-term memory (LSTM)
and a convolutional neural network (CNN) for lightweight
and accurate detection of falls. Using other architectures and

methods, numerous studies have explored novel approaches to
fall detection. For instance, several past fall detection systems
have utilized wearable technologies, acoustic signaling, or
camera-based detection. However, these systems face variance
in efficacy and reliability, which we seek to overcome in this
study.

II. RELATED WORK

A. Wearable Devices

Wearable devices have been the leading solution for de-
tecting falls due to their wireless technology and continuous
health monitoring capabilities. Chander et al. [3] emphasize
the need for wearable stretch sensors in the field of er-
gonomics because of the devices’ potential to detect collapses
in the workplace. They propose the use of soft-robotic-stretch
(SRS) sensors for fall detection, finding a high correlation
between SRS sensor data and 3D motion capture ankle angle
kinematics with minimal error (R2 = 0.854, RMSE = 1.96,
MAE = 1.54). These results suggest that SRS sensors could
accurately capture ankle joint kinematics on flat and tilted
surfaces. Nonetheless, wearable SRS faces limitations due to
its sensitivity to stress-induced movements and impact with an
object. Hussain et al. [4] also propose a fall-detection system
that implements support vector machine, k-nearest neighbors,
and random forest. While their findings present an accuracy
between 96.82% and 99.80% in recognizing different falling
activities, there were challenges in distinguishing between
similar fall patterns. Moreover, their F1 score of 67.10 suggests
poor model performance and low precision rates.

B. Sound-Based Approaches

In contrast to wearable devices, sound analysis offers a non-
intrusive and scalable solution for detecting falls in the elderly
population. Kaur et al. [5] utilize Transformer architecture to
classify sound input into ”fall” or ”no fall” categories with an
accuracy of 0.8673. Their design of an audio Transformer-
based deep learning model is beneficial in settings where
existing techniques cannot be implemented due to privacy



concerns. However, reliance on ambient sound faces chal-
lenges in noisy environments and situations where fall sounds
are faint or overshadowed by other noises. Khan et al. [6]
propose an unsupervised fall detection system that removes
interferences from background sound sources using source
separation techniques. They use a one-class support vector
machine method to distinguish fall from non-fall sounds,
achieving 99.28% accuracy with no interference and 92.93%
accuracy with a 75% interference level. Since interference
hindered performance of the model, there is an inherent need
to improve robustness in varied acoustic environments.

C. Biomedical Systems

Biomedical signal-based models are another alternative for
automatic fall detection and health monitoring. Hwang et al.
[7] developed a system for fall detection in elderly people
using a chest-mounted accelerometer, gyroscope, and tilt sen-
sor. They evaluated their system by experimenting on three
adults over the age of 26, identifying falls in 119 out of 123
trials, corresponding to a 96.7% accuracy. While their results
appear promising, the model lacks testing on the primary target
demographic and the experiment has an insufficient number of
trials to prove effective in real-world application. Butt et al.
[8] utilize electrocardiogram signals from a wearable sensor
to signal a fall, while passing a dataset of a collected sequence
of images into a fine-tuned pre-trained CNN. While the CNN
achieved an optimal accuracy of 98.44%, the collected data
contained variation due to differing signals and noise present
in the multiple datasets used.

D. Vision-Based Technology

Computer vision-based fall detection methodologies remain
the most widely applicable and reliable form of monitoring
falls. A study by Maitre et al. [9] employs a CNN in conjunc-
tion with an LSTM network, utilizing signals acquired from
ultra-wideband (UWB) radars. The detection system achieved
its best accuracy of 89% through a train-test split of 70:30
on their own dataset. The study’s dataset, however, comprises
only five participants. Marcos et al. [10] presents another CNN
architecture to classify a sequence of events as either fall
or non-fall. The study, trained with the UR dataset, uses an
optical flow images generator to compute the motion between
consecutive frames in a video. While it achieved a sensitivity
of 100% on the UR dataset, the model’s specificity reached
only 94.86%, indicating the potential for false negatives.

III. METHODOLOGY

Source code for the project can be found at:

https://github.com/sjain2025/LapseNet Fall Detection.git

A. Data Acquisition

We used four public datasets to train LapseNet, each con-
taining videos of falls and activities of daily living, or ADL
(e.g. kneeling, walking, or picking up an object). The datasets
that we used include the UR Fall Detection Dataset [11] made
by the University of Rzeszow, the Multiple Cameras Fall

Dataset [12] by the University of Montreal, the CAUCAFall
Dataset [13], and the UBFC Fall Detection Dataset [14]. The
UR Fall Detection Dataset consists of 30 falls taken from
two cameras and another 40 videos of ADL, for a total of
100 videos. The Multiple Cameras Fall Dataset includes 24
scenarios, out of which 22 contain a fall and two do not.
Each scenario includes views from eight different cameras.
We used one camera angle video from the first 19 scenarios,
and we used videos from all eight camera angles from the
last two scenarios, for a total of 35 videos. The CAUCAFall
Dataset is structured by ten different subjects, who performed
10 activities each: five were falls and five were ADL. We did
not use videos from Subjects 6 and 8 because the videos were
in black and white, whereas the rest were in color. Therefore,
we used 80 videos in total from the CAUCAFall Dataset. The
UBFC Fall Detection Dataset contains videos from falls in
six rooms, from which we used five rooms (office, two coffee
rooms, two home rooms) and seven videos from each room to
maintain balance in the dataset between ADL and fall videos.
Hence, we used 35 videos from this dataset.

B. Preprocessing

The CAUCAFall, Multiple Cameras Fall, and UBFC
datasets consisted of .avi files, and the UR Fall Detection
Dataset stored videos as folders of frames (PNGs). We pro-
cessed the .avi files and folders of frames into lists of images
representing the videos. From here we condensed the videos
into sequences of 30 frames. For example, we would take
every fifth frame from a video with 150 frames, condensing it
into 30 frames. This process assisted with making the dataset
more lightweight and allowed us to capture essential parts of
the video while minimizing the influence of irrelevant details.
Furthermore, storing the videos in this manner helped the
model easily extract relevant details to predict falls. We resized
the images to 128 × 128, leading to slight loss of quality
in images but an increase in processing ability. Furthermore,
we utilized the TensorFlow API to create and concatenate
the datasets using the tf.data.Dataset object and the
from_tensor_slices method. We used batch sizes of 16
sequences per batch.

C. Model

Fig. 1 shows a summary of the model’s input and output
shapes, as well as the layers’ structure. The model that
we constructed utilizes a hybrid CNN and LSTM, a type
of recurrent neural network, with Keras and TensorFlow
backend. This combination of CNN and LSTM allows the
model to effectively learn spatial and temporal features. The
model starts with a TimeDistributed wrapper around
the convolutional (Conv2D) and pooling (MaxPooling2D)
layers, which ensure that each video frame is processed
independently. Next, the model implements Dropout layers
to prevent overfitting and ensure generalization in real-world
application. After these layers are flattened, the features are
passed into an LSTM layer for sequence modeling, which
captures temporal dependencies and patterns across the frame

https://github.com/sjain2025/LapseNet_Fall_Detection.git


sequences. Following dropout regularization and dense layers,
sigmoid activation and binary cross-entropy loss functions
output a binary result: 0 for no fall and 1 for fall.

Fig. 2 shows the model’s architecture, composed of a 64-cell
LSTM, where each cell takes input from a convolutional block.
The model processes input video frames using multiple par-
allel streams, each containing a sequence of layers: Conv2D
layers for feature extraction, followed by MaxPooling2D
layers for downsampling, and Dropout layers for regulariza-
tion. This architecture leverages the spatial feature extraction
capabilities of CNNs and the sequence modeling strengths of
LSTMs to achieve high performance in video classification
tasks.

D. Training

Our dataset consists of 250 videos featuring both fall and
ADL scenarios. We employed a random split of 70% for
training (175 videos), 20% for testing (50 videos), and 10%
for validation (25 videos). We trained the model with 83.5 GB
of RAM and on a Google Colaboratory A100 GPU, which
is ideal for accelerated computing tasks because of its faster
training times and high throughput. We conducted training
over 80 epochs while using a learning rate of 0.001 and a
batch size of 16. Throughout its training, the model utilized
the Adam optimizer: an iterative optimization algorithm that
minimizes the loss function. After preprocessing and data
preparation, the model completed its 80-epoch training in
approximately 289.94 seconds, demonstrating its lightweight
capabilities.

The model was trained to minimize binary cross-entropy
loss on the training set, given by the following equation:

LBCE = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (1)

In (1), LBCE is binary cross-entropy loss, N is the number
of samples in the training set, yi is the true label (0 or 1)
of the i-th sample, and pi is the predicted probability of the
sample being class 1 (fall).

IV. RESULTS AND DISCUSSION

We recorded five performance metrics for LapseNet: accu-
racy, loss, AUC, precision, and recall.

Accuracy measures the overall correctness of the model’s
predictions across all classes, given by the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

AUC represents the area under the receiver operating char-
acteristic (ROC) curve, which plots the true positive rate
(recall) against the false positive rate (1 - specificity). AUC
is given by the following equation:

AUC =

∫ 1

0

TPR d(FPR) (3)

or in discrete form, Fig. 1. Model Summary



Fig. 2. Model Architecture

AUC =

n−1∑
i=1

1

2
(FPRi+1 − FPRi)(TPRi+1 + TPRi) (4)

where TPR (True Positive Rate) is TP
TP+FN , FPR (False

Positive Rate) is FP
FP+TN , and (FPRi, TPRi) are the coor-

dinates of the ROC curve points.
Precision measures the proportion of correctly predicted

falls among all predicted falls, shown by this equation:

Precision =
TP

TP + FP
(5)

Recall measures the proportion of correctly predicted falls
among all actual falls, given by the equation:

Recall =
TP

TP + FN
(6)

In Equations (2), (5), and (6), TP , TN , FP , and FN
represent true positives, true negatives, false positives, and
false negatives, respectively. These metrics collectively assess
the model’s performance in fall detection, with accuracy
providing a broad view of overall correctness, AUC indicating
the model’s discriminative ability, and precision and recall
offering insights into specific aspects of the model’s predictive
performance.

Fig. 3. Training and Validation Accuracy Plot

Fig. 4. Training and Validation AUC Plot



Fig. 5. Training and Validation Recall Plot

Fig. 6. Training and Validation Precision Plot

Fig. 7. Training and Validation Loss Plot

LapseNet achieved a training accuracy of 99.43% and a
validation and test accuracy of 100% each. The AUC, preci-
sion, and recall were 100% in training, validation, and testing.
As shown in Fig. 3-6, accuracy, AUC, precision, and recall
improved over the 80 epochs that the model was trained on.
Moreover, as depicted in Fig. 7, loss continually decreased
over the 80 epochs, indicating that the model consistently
improved its performance over the training period.

While the model trained on four diverse datasets, it con-
tinued to maintain the high level of performance that has
been found in other studies using vision-based approaches,
such as the 3D-CNN and LSTM approach by Lu et al. [15],
which used only two fall datasets, the UR Fall Dataset and
Multiple Cameras Fall Dataset, to train their model. A major
concern in these studies is a high rate of Type I error (false
positives), which can lead to wrongly reporting information
to authorities or caregivers, potentially causing unnecessary
alarm or intervention. Our model achieved a false positive rate
of 0% in training, validation, and testing, demonstrated by its
high precision and AUC scores. These metrics indicate that
our model minimizes the likelihood of incorrectly predicting
a fall when no fall has occurred, thus mitigating the risk of
reporting false information.

A key novelty of LapseNet lies in its high accuracy,
precision, recall, and AUC. For instance, the 3D-CNN and
LSTM architecture tested by Su et al. [16] achieved a 98.06%
accuracy on the UR Fall detection dataset but a 94.84%
accuracy on the Multiple Cameras Fall Dataset. On the other
hand, LapseNet is diversely trained with four datasets and had
a higher accuracy of 99.43%, highlighting its generalizability
compared to existing solutions. Another notable innovation
of LapseNet is its lightweight architecture, which ensures
efficient processing and low computational requirements with-
out compromising on accuracy. Chhetri et al. [17] applied
enhanced optical flow and pre-trained models to achieve a 40
to 50 ms improvement in processing speed, but only achieved
95.11, 92.91, and 91.1 percent accuracy on the UR Fall
Dataset, Multiple Cameras Fall Dataset, and Fall Detection
Datasets, respectively. While Maitre et al. [9] developed a
90% accurate fall detection system, its UWB radars are more
sophisticated than the standard digital image sensor used in
LapseNet because they generate large amounts of data that
require significant processing.

V. CONCLUSION

A. Summary

In this study, we developed a lightweight system to detect
collapses in indoor rooms through a vision-based CNN and
LSTM architecture. By training with four diverse datasets
featuring both fall and ADL scenarios in multiple settings,
the results indicate high performance, with validation and
testing accuracies of 100%. This performance indicates its
potential to significantly improve the safety and wellbeing
of the elderly, especially in unsupervised settings. LapseNet’s
ability to distinguish between ADLs and falls with 0% false



positive rate demonstrates its reliability and practicality in real-
world scenarios.

B. Limitations
Despite promising results, LapseNet undoubtedly has limi-

tations and a scope for improvement. Although we used four
publicly available datasets to make the model robust, the
total number of videos may have been insufficient to fully
capture the variability in fall scenarios and activities of daily
living. Hence, to better train the model, we could have used
more participants and videos or simulated falls in different
locations and angles. Furthermore, it is possible that our model
may have overfit to the data during training, indicated by its
100% accuracy, precision, recall, and AUC across all datasets.
Another limitation in the study is that the model was only
trained on falls in indoor settings, so it may not perform as
well in outdoor or variable environments.

C. Future Work
In the future, we could incorporate acoustic detection or

wearable devices in a multimodal approach to increase the
system’s robustness and accuracy through an additional layer
of verification and data fusion. If one modality provides
ambiguous results, the other can help confirm the occurrence
of a fall. In addition, we could develop a model to identify
the specific frames in a video during which the fall occurs in
the future. Additionally, we could make a web application that
allows users to apply LapseNet to a network of cameras similar
to traditional closed-circuit television (CCTV) cameras.

Going forward, we plan to conduct further studies to in-
corporate these improvements in our model. Altogether, these
steps will ultimately contribute to a highly effective tool
that can prevent millions of injuries annually worldwide. The
successful implementation of LapseNet could lead to a crucial
layer of protection in assisted living facilities, private homes,
and hospitals.
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